Multi-field surface electrode for selective electrical stimulation.
نویسندگان
چکیده
We designed a 24-field array and an on-line control box that selects which and how many of 24 fields will conduct electrical charge during functional electrical stimulation. The array was made using a conductive microfiber textile, silver two-component adhesive, and the conductive ink imprint on the polycarbonate. The control box comprised 24 switches that corresponded one-to-one to the fields on the array. Each field could be made conductive or nonconductive by simple pressing of the corresponding push-button type switch on the control box. We present here representative results of the selectivity of the new electrode measured in three tetraplegic patients during functional electrical stimulation of the forearm. The task was to generate finger flexion and extension with minimal interference of the wrist movement during lateral and palmar grasps. Therapists determined the appropriate pattern that lead to effective grasping, lasting on average 5 min per stimulation channel in the first session. This optimal conductive pattern (size and shape) provided effective finger flexion and extension with minimal wrist flexion/extension and ulnar/radial deviations (<10 degrees). The optimal size and shape of the electrode in all cases had a branched pattern. The selection of the optimal stimulation site was achieved without moving the electrode. The size and shape were reproducible in the same subject from session to session, yet were different from subject to subject. The optimal electrode size and shape changed when subjects pronated and supinated their forearm. The control box includes a program that can dynamically change the number and sites of the conductive fields; hence, it is feasible to use this during functional movements. Subjects learned how to determine the optimal electrode pattern; hence, these electrodes could be effective for home usage.
منابع مشابه
Multi-Electrode Array for Transcutaneous Lumbar Posterior Root Stimulation.
Interest in transcutaneous electrical stimulation of the lumbosacral spinal cord is increasing in human electrophysiological and clinical studies. The stimulation effects on lower limb muscles depend on the depolarization of segmentally organized posterior root afferents and, thus, the rostro-caudal stimulation site. In previous studies, selective stimulation was achieved by varying the positio...
متن کاملElectroanalytical sensing of Asulam based on nanocomposite modified glassy carbon electrode
In this study a facile approach to employ Copper nanoparticle (CuNPs) and multi-walled carbon nanotubes (MWCNT) as the nanomaterial for selective detection of asulam have been investigated. This work reports the electrocatalytic oxidation of asulam on glassy carbon electrodes (GCE) modified with multi-walled carbon nanotubes (MWCNT), ionic liquids (IL), chitosan (Chit) and copper nanoparticles ...
متن کاملMulti-electrode arrays technology for the non-invasive recording of neural signals: a review article
The recording of electrophysiological activities of brain neurons in the last half-century has been considered as one of the effective tools for the development of neuroscience. One of the techniques for recording the activity of nerve cells is the multi-electrode arrays (MEAs). Microelectrode arrays (MEAs) are usually employed to record electrical signals from electrogenic cells like neurons o...
متن کاملAutomatic determination of the optimal shape of a surface electrode: selective stimulation.
We present a method for automatic determination of the shape and position of the surface electrode for selective control of fingers extension and flexion by means of electrical stimulation. The multi-pad electrodes used in the experiments comprised 24 pads (1cm diameter) distributed over an area (7 cm x 10 cm) positioned over dorsal and volar aspects of the forearm. The four-channel stimulation...
متن کاملImproved Focalization of Electrical Microstimulation Using Microelectrode Arrays: A Modeling Study
Extracellular electrical stimulation (EES) of the central nervous system (CNS) has been used empirically for decades, with both fundamental and clinical goals. Currently, microelectrode arrays (MEAs) offer new possibilities for CNS microstimulation. However, although focal CNS activation is of critical importance to achieve efficient stimulation strategies, the precise spatial extent of EES rem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Artificial organs
دوره 29 6 شماره
صفحات -
تاریخ انتشار 2005